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ABSTRACT	
  

We outline the rationale and preliminary results of using the state context property 
(SCOP) formalism, originally developed as a generalization of quantum mechanics, to 
describe the contextual manner in which concepts are evoked, used and combined to 
generate meaning. The quantum formalism was developed to cope with problems arising 
in the description of (i) the measurement process, and (ii) the generation of new states 
with new properties when particles become entangled. Similar problems arising with 
concepts motivated the formal treatment introduced here. Concepts are viewed not as 
fixed representations, but entities existing in states of potentiality that require interaction 
with a context—a stimulus or another concept—to 'collapse' to an instantiated form (e.g. 
exemplar, prototype, or other possibly imaginary instance). The stimulus situation plays 
the role of the measurement in physics, acting as context that induces a change of the 
cognitive state from superposition state to collapsed state. The collapsed state is more 
likely to consist of a conjunction of concepts for associative than analytic thought 
because more stimulus or concept properties take part in the collapse. We provide two 
contextual measures of conceptual distance—one using collapse probabilities and the 
other weighted properties—and show how they can be applied to conjunctions using the 
pet fish problem. 
 
Keywords: analytic thought, associative hierarchy, associative thought, collapse, 
conceptual distance, focus/defocus, guppy effect, state space, superposition 

 
1.	
  INTRODUCTION	
  
Theories of concepts have by and large been representational theories. By this we 
mean that concepts are seen to take the form of fixed mental representations, as 
opposed to being constructed, or ‘re-constructed’, on the fly through the interaction 
between the cognitive state and the situation or context. 

Representational theories have met with some success. They are adequate 
for predicting experimental results for many dependent variables including 
typicality ratings, latency of category decision, exemplar generation frequencies and 
category naming frequencies. However, increasingly, for both theoretical and empirical 
reasons, they are coming under fire (e.g. Riegler et al. 1999, Rosch 1999). As Rosch puts 
it, they do not account for the fact that concepts have a participatory, not an identifying 
function in situations. That is, they cannot explain the contextual manner in which 
concepts are evoked and used (see also Murphy and Medin 1985, Hampton 1987, Medin 
and Shoben 1988, Gerrig and Murphy 1992, Komatsu 1992). Contextuality is the reason 
why representational theories cannot describe or predict what happens when two or more 
concepts arise together, or follow one another, as in the creative generation or 
interpretation of conjunctions of concepts. A concept's meaning shifts depending on what 
other concepts it arises in the context of (Reed 1972, Storms et al. 1996, 1999, 
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Wisniewski 1991, 1997). 
This paper shows how formalisms designed to cope with context and conjunction in 

the microworld may be a source of inspiration for a description of concepts. In this 
contextualized theory,' not only does a concept give meaning to a stimulus or situation, 
but the situation evokes meaning in the concept, and when more than one is active they 
evoke meaning in each other. 

 
2.	
  Limitations	
  of	
  representational	
  approaches	
  
We begin by briefly summarizing some of the most influential representational 
theories of concepts, and efforts to delineate what a concept is with the notion of 
conceptual distance. We then discuss difficulties encountered with representational 
approaches in predicting membership assessment for conjunctions of concepts. 
We then show that representational theories have even more trouble coping with 
the spontaneous emergence or loss of features that can occur when concepts 
combine. 
 
2.1. Theories of concepts and conceptual distance 
According to the classical theory of concepts, there exists for each concept a set of 
defining features that are singly necessary and jointly sufficient (e.g. Sutcliffe 1993). 
Extensive evidence has been provided against this theory (or overviews see Smith and 
Medin 1981, Komatsu 1992). 

A number of alternatives have been put forth. According to the prototype 
theory (Rosch 1975, 1978, 1983, Rosch and Mervis 1975), concepts are represented 
by a set of, not defining, but characteristic features, which are weighted in the 
definition of the prototype. A new item is categorized as an instance of the 
concept if it is sufficiently similar to this prototype. The prototype consists of a 
set of features {a1, a2, a3 ...aM}, with associated weights or applicability values {x1, 
x2, x3... xM}, where M is the number of features considered. The distance between a 
new item and the prototype can be calculated as follows, where s indexes the test 
stimulus, xsm refers to applicability of mth feature to the stimulus s, and xpm refers to 
applicability of mth feature to the prototype: 

 

𝒅𝒔 = 𝒙𝒔𝒎 − 𝒙𝒑𝒎
𝟐

𝑴

𝒎!𝟏

                                                                                                      (1)	
  

 
The smaller the value of ds for a given item, the more representative it is of the 
concept. Thus concept membership is graded, a matter of degree. 

According to the exemplar theory, (e.g. Medin et al. 1984, Nosofsky 1988, 
1992, Heit and Barsalou 1996) a concept is represented by, not defining or 
characteristic features, but a set of instances of it stored in memory. Thus each of the 
{E1,E2,E3,…EN} exemplars has a set {a1, a2, a3 ...aM}, of features with 
associated weights {x1, x2, x3... xM}. A new item is categorized as an instance of 
concept if it is sufficiently similar to one or more of these previously encountered 
instances. For example, Storms et al. (2000) used the following distance function, 



	
  

	
  
3	
  

where s indexes the test stimulus, xsm refers to applicability of mth feature to stimulus 
s, and xnm refers to applicability of mth feature to nth most frequently generated 
exemplar: 
 

𝒅𝒔 = 𝒙𝒔𝒎 − 𝒙𝒑𝒎
𝟐

𝑴

𝒎!𝟏

𝑵

𝒏!𝟏

                                                                                                  (2) 

 
Once again, the smaller the value of ds for a given item, the more representative it is 
of the concept. 

Note that these theories have difficulty accounting for why items that 
are dissimilar or even opposite might nevertheless belong together; for example, 
why white might be more likely to be categorized with black than with flat, or why 
dwarf might be more likely to be categorized with giant than with say, salesman. 
The only way out is to give the set of relevant 'measurements' or contexts the same 
status as features, i.e. to lump together as features not only things like 'large' but 
also things like 'has a size' or 'degree to which size is relevant'. 

According to another approach to concepts, referred to as the theory theory, 
concepts take the form of 'mini-theories' (e.g. Murphy and Medin 1985) or schemata 
(Rummelhart and Norman 1988), in which the causal relationships amongst features 
or properties are identified. A mini-theory contains knowledge concerning both 
which variables or measurements are relevant, and the values obtained for them. 
This does seem to be a step toward a richer understanding of concept representation, 
though many limitations have been pointed out (see for example Komatsu 1992, 
Fodor 1994, Rips 1995). Clearly, the calculation of conceptual distance is less 
straightforward, though to us this reveals not so much a shortcoming of the theory 
theory, but of the concept of conceptual distance itself. In our view, concepts are not 
distant from one another at all, but interwoven, and this interwoven structure cannot 
be observed directly, but only indirectly, as context-specific instantiations. For 
example, the concept egg will be close to sun in the context 'sunny side up' but far 
in the context 'scrambled', and in the context of the Dr Suess book Green Eggs and 
Ham it acquires the feature 'green'. 

Yet another theory of concepts, which captures their mutable, context-
dependent nature, but at the cost of increased vagueness, is psychological essentialism. 
The basic idea is that instances of a concept share a hidden essence which defines its 
true nature (e.g. Medin and Ortony 1989). In this paper we attempt to get at this 
notion in a more rigorous and explicit way than has been done. 

 
2.2. Membership assessments for conjunctive categories 
The limitations of representational theories became increasingly evident through 
experiments involving conjunctions of concepts. One such anomalous phenomenon 
is the so-called guppy effect, where a guppy is not rated as a good example of the 
concept pet, nor of the concept fish, but it is rated as a good example of pet fish 
(Osherson and Smith 1981).2 Representational theories cannot account for this. 
Using the prototype approach, since a guppy is neither a typical pet nor a typical 
fish, ds for the guppy stimulus is large for both pet and fish, which is difficult to 
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reconcile with the empirical result that it is small for pet fish. Using the exemplar 
approach, although a guppy is an exemplar of both pet and fish, it is unlikely to be 
amongst the n most frequently generated ones. Thus once again ds is large for both 
pet and fish, which is difficult to reconcile with it being small for pet fish.  

The problem is not solved using techniques from fuzzy set mathematics such as the 
minimum rule model, where the typicality of a conjunction (conjunction typicality) 
equals the minimum of the typicalities of the two constituent concepts (Zadeh 1965, 
1982). (For example, the typicality rating for pet fish certainly does not equal the 
minimum of that for pet or fish.) Storms et al. (2000) showed that a weighted and 
calibrated version of the minimum rule model can account for a substantial 
proportion of the variance in typicality ratings for conjunctions exhibiting the guppy 
effect. They suggested the effect could be due to the existence of contrast categories, 
the idea being that a concept such as fruit contains not only information about fruit, 
but information about categories that are related to, yet different from, fruit. Thus, a 
particular item might be a better exemplar of the concept fruit if it not only has many 
features in common with exemplars of fruit but also few features in common with 
exemplars of vegetables (Rosch and Mervis, 1975). However, another study provided 
negative evidence for contrast categories (Verbeemen et al. in press). 

Nor does the theory theory or essence approach get us closer to solving 
the conjunction problem. As Hampton (1997) points out, it is not clear how a set 
of syntactic rules for combining or interpreting combinations of mini-theories could be 
formulated. 

 
2.3. 'Emergence' and loss of properties during conjunction 
An even more perplexing problem facing theories of concepts is that, as many studies 
(e.g. Hastie et al. 1990, Kunda et al. 1990, Hampton 1997) have shown, a conjunction 
often possesses features which are said to be emergent: not true of its constituents. For 
example, the properties 'lives in cage' and 'talks' are considered true of pet birds, 
but not true of pets or birds. 

Representational theories are not only incapable of predicting what sorts 
of features will emerge (or disappear) in the conjunctive concept, but they do not 
even provide a place in the formalism for the gain (or loss) of features. This problem 
stems back to a limitation of the mathematics underlying not only representational 
theories of concepts (as well as compositional theories of language) but also classical 
physical theories. The mathematics of classical physics only allows one to 
describe a composite or joint entity by means of the product state space of the 
state spaces of the two subentities. Thus if X1

 is the state space of the first 
subentity, and X2

 the state space of the second, the state space of the joint entity is 
the Cartesian product space 𝑋!×  𝑋!. For this reason, classical physical theories 
cannot describe the situation wherein two entities generate a new entity with 
properties not strictly inherited from its constituents. 

One could try to solve the problem ad hoc by starting all over again with a 
new state space each time there appears a state that was not possible given the 
previous state space; for instance, every time a conjunction like pet bird comes into 
existence. However, this happens every time one generates a sentence that has not 
been used before, or even uses the same sentence in a slightly different context. Another 



	
  

	
  
5	
  

possibility would be to make the state space infinitely large to begin with. However, 
since we hold only a small number of items in mind at any one time, this is not a 
viable solution to the problem of describing what happens in cognition. This 
problem is hinted at by Boden (1990), who uses the term impossibilist creativity to 
refer to creative acts that no only explore the existing state space but transform that 
state space; in other words, it involves the spontaneous generation of new states with 
new properties. 
 
2.4. The 'obligatory peeking' principle 
In response to difficulties concerning the transformation of concepts, and how mini- 
theories combine to form conjunctions, Osherson and Smith (1981) suggested that, 
in addition to a modifiable mini-theory, concepts have a stable definitional core. It is 
the core, they claim, that takes part in the combining process. However, the notion 
of a core does not straightforwardly solve the conjunction problem. Hampton (1997) 
suggested that the source of the difficulty is that in situations where new properties 
emerge during concept conjunction, one is making use of world knowledge, or 
'extensional feedback'. He states: 'We cannot expect any model of conceptual 
combination to account directly for such effects, as they clearly relate to information 
that is obtained from another source—namely familiarity with the class of objects in 
the world' (Hampton 1997: 148). Rips (1995) refers to this as the No Peeking 
Principle. Rips' own version of a dual theory distinguishes between representations- 
of and representations-about, both of which are said to play a role in conjunction. 
However, he does not claim to have solved the problem of how to describe concepts 
and their conjunctions, noting 'It seems likely that part of the semantic story will 
have to include external causal connections that run through the referents and their 
representations' (Rips 1995: 84). 

Goldstone and Rogosky's (in press) ABSURDIST algorithm is a move in 
this direction. Concept meaning depends on a web of relations to other concepts in 
the same domain, and the algorithm uses within-domain similarity relations to 
translate across domains. In our contextualized approach, we take this even 
further by incorporating not just pre-identified relations amongst concepts, but 
new relations made apparent in the context of a particular stimulus situation, i.e. 
the external world. We agree that it may be beyond our reach to predict exactly 
how world knowledge will come into play in every particular case. However, it 
is at least possible to put forth a theory of concepts that not only allows 'peeking', 
but in a natural (as opposed to ad hoc) way provides a place for it. In fact, in our 
model, peeking (from either another concept, or an external stimulus) is 
obligatory; concepts require a peek, a context, to actualize them in some form 
(even if it is just the most prototypical form). The core or essence of a concept is viewed 
as a source of potentiality that requires some context to be dynamically actualized, 
and that thus cannot be described in a context-independent manner (except as a 
superposition of every possible context-driven instantiation of it). In this view, 
each of the two concepts in a conjunction constitutes a context for the other that 
'slices through' it at a particular angle, thereby mutually actualizing one another's 
potentiality in a specific way. As a metaphorical explanatory aid, if concepts were 
apples, and the stimulus a knife, then the qualities of the knife would determine not 
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just which apple to slice, but which direction to slice through it. Changing the 
knife (the context) would expose a different face of the apple (elicit a different version 
of the concept). And if the knife were to slash through several apples (concepts) at 
once, we might end up with a new kind of apple (a conjunction). 

 
3. Two	
  cognitive	
  modes:	
  analytic	
  and	
  associative 
We have seen that, despite considerable success when limited to simple concepts like 
bird, representational theories run into trouble when it comes to conjunctions like pet 
bird or even green bird. In this section we address the question: why would they be so 
good for modeling many aspects of cognition, yet so poor for others? 
 
3.1. Creativity and flat associative hierarchies 
It is widely suggested that there exist two forms of thought (e.g. James 1890, Piaget 
1926, Neisser 1963, Johnson-Laird 1983, Dennett 1987, Dartnell 1993, Sloman 1996, 
Rips 2001a). One is a focused, evaluative analytic mode, conducive to analysing 
relationships of cause and effect. The other is an intuitive creative associative mode 
that provides access to remote or subtle connections between features that may be 
correlated but not necessarily causally related. We suggest that while representa-
tional theories are fairly adequate for predicting and describing the results of 
cognitive processes that occur in the analytical mode, their shortcomings are revealed 
when it comes to predicting and describing the results of cognitive processes that 
occur in the associative mode, due to the more contextual nature of cognitive 
processes in this mode. 

Since the associative model is thought to be more evident in creative individuals, 
it is useful at this point to look briefly at some of the psychological attributes 
associated with creativity. Martindale (1999) has identified a cluster of such 
attributes, including defocused attention (Dewing and Battye 1971, Dykes and 
McGhie 1976, Mendelsohn 1976), and high sensitivity (Martindale and Armstrong 
1974, Martindale 1977), including sensitivity to subliminal impressions, that is, 
stimuli that are perceived but of which we are not conscious of having perceived 
(Smith and Van de Meer 1994). 

Another characteristic of creative individuals is that they have flat 
associative hierarchies (Mednick 1962). The steepness of an individual's associative 
hierarchy is measured experimentally by comparing the number of words that 
individual generates in response to stimulus words on a word association test. 
Those who generate only a few words in response to the stimulus have a steep 
associative hierarchy, whereas those who generate many have a flat associative 
hierarchy. Thus, once such an individual has run out of the more usual 
associations (e.g. chair in response to table), unusual ones (e.g. elbow in response to 
table) come to mind. 

It seems reasonable that in a state of defocused attention and 
heightened sensitivity, more features of the stimulus situation or concept under 
consideration get processed. (In other words, the greater the value of M in equations (1) 
and (2) for prototype and exemplar theories.) It also seems reasonable that flat 
associative hierarchies result from memories and concepts being more richly 
etched into memory; thus there is a greater likelihood of an associative link 
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between any two concepts. The experimental evidence that flat associative 
hierarchies are associated with defocused attention and heightened sensitivity 
suggests that the more features processed, the greater the potential for associations 
amongst stored memories and concepts. We can refer to the detail with which 
items are stored in memory as associative richness. 

 
3.2. Activation of conceptual space: spiky versus flat 
We now ask: how might different individuals, or a single individual under different 
circumstances, vary with respect to degree of detail with which the stimulus or object 
of thought gets etched into memory, and resultant degree of associative richness?3 
Each memory location is sensitive to a broad range of features, or values of an 
individual feature (e.g., Churchland and Sejnowski 1992). Thus although a particular 
location responds maximally to lines of a certain orientation, it may respond 
somewhat to lines of a close orientation. This is referred to as coarse coding. It has 
been suggested that the coarseness of the coding—that is, the size of the higher cortical 
receptive field—changes in response to attention (Kruschke 1993). Kruschke's 
neural network model of categorization, ALCOVE, incorporates a selective 
attention mechanism, which enables it to vary the number of dimensions the network 
takes into account at a time, and thereby mimics some previously puzzling aspects of 
human categorization. In neural networks, receptive field activation can be graded 
using a radial basis function (RBF). Each input activates a hypersphere of hidden 
nodes, with activation tapering off in all directions according to a (usually) Gaussian 
distribution of width σ (Willshaw and Dayan, 1990, Hancock et al., 1991, Holden 
and Niranjan, 1997, Lu et al. 1997).4 Thus if a is small, the input activates a few 
memory locations but these few are hit hard; we say the activation function is spiky. 
If σ is large, the input activates many memory locations to an almost equal degree; 
we say the activation function is relatively flat. 

Whether or not human memory works like a RBF neural network, the 
idea underlying them suggests a basis for the distinction between associative and 
analytic modes of thought. We will use the terms spiky and flat activation function to 
refer to the extent to which memory gets activated by the stimuli or concepts present in a 
given cognitive state, bearing in mind that this may work differently in human 
cognition than in a neural network.5 The basic idea then is that when the activation 
function is spiky, only the most typical, central features of a stimulus or concept are 
processed. This is conducive to analytic thought where remote associations would be 
merely a distraction; one does not want to get sidetracked by features that are 
atypical, or modal (Rips 2001b), which appear only in imagined or counterfactual 
instances. However, as the number of features or stimulus dimensions increases, 
features that are less central to the concept that best categorizes it start to get 
included, and these features may in fact make it defy straightforward classification as 
strictly an instance of one concept or another. When the activation function is 
relatively flat, more features are attended and participate in the process of 
activating and evoking from memory; atypical as well as typical ones. 
Therefore, more memory locations participate in the release of 'ingredients' for 
the next instant. These locations will have previously been modified by (and can 
therefore be said to 'store' in a distributed manner) not only concepts that obviously share 
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properties with the stimulus, but also concepts that are correlated with it in unexpected 
ways. A flat activation function is conducive to creative, associative thought because 
it provides a high probability of evoking one or more concepts not usually associated 
with the stimulus. 

Thus we propose that representational theories—in which concepts are depicted as 
fixed sets of attributes—are adequate for modeling analytical processes, which 
establish relationships of cause and effect amongst concepts in their most proto-
typical forms. However, they are not adequate for modeling associative processes, 
which involve the identification of correlations amongst more richly detailed, 
context-specific forms of concepts. In the associative mode, aspects of a situation the 
relevance of which may not be readily apparent, or relations to other concepts 
which have gone unnoticed—perhaps of an analogical or metaphorical nature—can 
'peek through'. A cognitive state in which a new relationship amongst concepts is 
identified is a state of potentiality, in the sense that the newly identified relationship 
could be resolved different ways depending on the contexts one encounters, both 
immediately, and down the road. For example, consider the cognitive state of the 
person who thought up the idea of building a snowman. It seems reasonable that this 
involved thinking of snow not just in terms of its most typical features such as 'cold' 
and 'white', but also the less typical feature 'moldable'. At the instant of inventing 
snowman there were many ways of resolving how to give it a nose. However, perhaps 
because the inventor happened to have a carrot handy, the concept snowman has 
come to acquire the feature 'carrot nose'. 

 
4.	
  A	
  formalism	
  that	
  incorporates	
  context	
  
We have seen that models of cognition have difficulty describing contextual, 
associative, or correlation-based processes. This story has a precedent. Classical 
physics does exceedingly well at describing and predicting relationships of causation, 
but it is much less powerful in dealing with results of experiments that entail 
sophisticated relationships of correlation. It cannot describe certain types of 
correlations that appear when quantum entities interact and combine to form joint 
entities. According to the dynamical evolution described by the Schrodinger 
equation, whenever there is interaction between quantum entities, they sponta-
neously enter an entangled state that contains new properties that the original 
entities did not have. The description of this birth of new states and new properties 
required the quantum mechanical formalism. 

Another way in which the shortcomings of classical mechanics were revealed 
had to do in a certain sense with the issue of 'peeking'. A quantum particle could not 
be observed without disturbing it; that is, without changing its state. Classical 
mechanics could describe situations where the effect of a measurement was 
negligible, but not situations where the measurement intrinsically influenced the 
evolution of the entity. The best it could do is avoid as much as possible any 
influence of the measurement on the physical entity under study. As a consequence, 
it had to limit its set of valuable experiments to those that have almost no effect on 
the physical entity (called observations). It could not incorporate the context 
generated by a measurement directly into the formal description of the physical 
entity. This too required the quantum formalism. 
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In this section we first describe the pure quantum formalism. Then we 
briefly describe the generalization of it that we apply to the description of concepts. 

 
4.1. Pure quantum formalism 
In quantum mechanics, the state of a physical entity can change in two ways: (i) 
under the influence of a measurement context, and this type of change is called 
collapse, and (ii) under the influence of the environment as a whole, and this change 
is called evolution. A state 𝜓  is represented by a unit vector of a complex Hilbert 
space H , which is a vector space over the complex numbers equipped with an 
inproduct (see Appendix I). A property of the quantum entity is described by a 
closed subspace of the complex Hilbert space or by the orthogonal projection 
operator P corresponding to this closed subspace, and a measurement context by a self-
adjoint operator on the Hilbert space, or by the set of orthogonal projection 
operators that constitute the spectral family of this self-adjoint operator (see 
Appendix II). If a quantum entity is in a state of  𝜓, and a measurement context is 
applied to it, the state 𝜓 changes to the state: 
 

𝑃(𝜓)
𝑃(𝜓)                                                                                                                                             (3) 

 
where P is the projector of the spectral family of the self-adjoint operator 
corresponding to the outcome of the measurement. This change of state is more 
specifically what is meant by the term collapse. It is a probabilistic change and the 
probability for state 𝜓 to change to state (𝑃(𝜓))/‖𝑃(𝜓)‖  under the influence of 
the measurement context is given by: 
 

𝜓,𝑃(𝜓)                 (4) 
 

where ,  is the inproduct of the Hilbert space (see Appendix II). 
The state prior to, and independent of, the measurement, can be retrieved as 

a theoretical object—the unit vector of complex Hilbert space that reacts to all 
possible measurement contexts in correspondence with experimental results. One 
of the merits of quantum mechanics is that it made it possible to describe the 
undisturbed and unaffected state of an entity even if most of the experiments needed 
to measure properties of this entity disturb this state profoundly (and often even 
destroy it). In other words, the message of quantum mechanics is that it is possible to 
describe a reality that only can be known through acts that alter this reality. 

There is a distinction in quantum mechanics between similarity in terms of which 
measurements or contexts are relevant, and similarity in terms of values for these 
measurements (a distinction which we saw in section two has not been present in 
theories of concepts). Properties for which the same measurement—such as the 
measurement of spin—is relevant are said to be compatible with respect to this 
measurement. One of the axioms of quantum mechanics—called weak modularity— 
is the requirement that orthogonal properties—such as 'spin up' and 'spin down'— 
are compatible. 

In quantum mechanics, the conjunction problem is seriously addressed, and 
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to some extent solved, as follows. When quantum entities combine, they do not 
stay separate as classical physical entities tend to do, but enter a state of entanglement. 
If H1 is the Hilbert space describing a first subentity, and H2 the Hilbert space 
describing a second subentity, then the joint entity is described in the tensor product 
space H1 ⨂ H2

 of the two Hilbert spaces H1
 and H2

 The tensor product always 
allows for the emergence of new states—specifically the entangled states—with new 
properties. 

The presence of entanglement—i.e. quantum structure—can be tested for 
by determining whether correlation experiments on the joint entity violate Bell 
inequalities (Bell 1964). Pitowsky (1989) proved that if Bell inequalities are satisfied 
for a set of probabilities concerning the outcomes of the considered experiments, 
there exists a classical Kolmogorovian probability model that describes these 
probabilities. The probability can then be explained as being due to a lack of 
knowledge about the precise state of the system. If, however, Bell inequalities are 
violated, Pitowsky proved that no such classical Kolmogorovian probability model 
exists. Hence, the violation of Bell inequalities shows that the probabilities involved are 
non-classical. The only type of non-classical probabilities that are well known in nature 
are the quantum probabilities.  

 
4.2. Generalized quantum formalism  
The standard quantum formalism has been generalized, making it possible to describe 
changes of state of entities with any degree of contextuality, whose structure is not purely 
classical nor purely quantum, but something in between (Mackey 1963, Jauch 1968, 
Piron 1976, 1989, 1990, Randall and Foulis 1976, 1978, Foulis and Randall 1981, Foulis 
et al. 1983, Pitowsky 1989, Aerts 1993, 2002, Aerts and Durt 1994 a, b). The 
generalizations of the standard quantum formalism have been used as the core 
mathematical structure replacing the Hilbert space of standard quantum mechanics the 
structure of a lattice, representing the set of features or properties of the physical entity 
under consideration. Many different types of lattices have been introduced, depending on 
the type of generalized approach and on the particular problem under study. This has 
resulted in mathematical structures that are more elaborate than the original lattice 
structure, and it is one of them, namely the state context property system, or SCOP, that 
we take as a starting point here.  

Let us now outline the basic mathematical structure of a SCOP. It consists of three 
sets and two functions, denoted:  

 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (Σ, M, L,  𝜇,  𝜈) 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (5)	
  

 
where: 𝛴 is the set of possible states; M is the set of relevant contexts; L is the lattice 
which describes the relational structure of the set of relevant properties or features; 𝜇 is a 
probability function that describes how a couple (e, p), where p is a state, and e a context, 
transforms to a couple (f ,q) where q is the new state (collapsed state for context e), and f 
the new context; 𝜈 is the weight or applicability of a certain property, given a specific 
state and context. The structure L is that of a complete, orthocomplemented lattice. This 
means that: 
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• A partial order relation denoted < on L representing that the implication of properties, 
i.e. actualization of one property implies the actualization of another. For 𝑎, 𝑏 ∉   L  we 
have:  

 
𝑎 < 𝑏⟺ if  𝑎  then  𝑏                                                   (6)  

 
• Completeness: infimum (representing the conjunction and denoted ∧) and supremum 

(representing the disjunction and denoted ∨) exists for any subset of properties. 0, 
minimum element, is the infimum of all elements of L and I, maximal element, is the 
supremum of all elements of L.  

 
• Orthocomplemented: an operation  ⊥ exists, such that for 𝑎, 𝑏 ∉ ℒ we have:  
 

(𝑎!)!   = 𝑎                                                            (7) 
 

𝑎 < 𝑏⟹ 𝑏! < 𝑎!                                                                                                              (8) 
 

𝑎 ∧ 𝑎! = 0,          𝑎 ∨ 𝑎! = 1                                                                                            (9) 
 

Thus 𝑎!   is the ‘negation’ of  𝑎. 
 
• Elements of L are weighted. Thus for state, p, context e and property a there exists 

weight 𝑣(𝑝, 𝑒,𝑎), and for a a ∉ L:  
 

𝑣 𝑝, 𝑒,𝑎 + 𝑣 𝑝, 𝑒,𝑎! = 1                                       (10) 
 
These general formalisms describe much more than is needed for quantum mechanics, 
and in fact, standard quantum mechanics and classical mechanics fall out as special cases 
(Aerts 1983). For the SCOP description of a pure quantum entity, see Appendix III. 

It is gradually being realized that the generalized quantum formalisms have 
relevance to the macroscopic world (e.g. Aerts 1991, Aerts, Aerts et a/. 2000, Aerts, 
Broekaert et al. 2000). Their application beyond the domain that originally gave birth to 
them is not as strange as it may seem. It can even be viewed as an unavoidable sort of 
evolution, analogous to what has been observed for chaos and complexity theory. 
Although chaos and complexity theory were developed for application in inorganic 
physical systems, they quickly found applications in the social and life sciences, and are 
now thought of as domain-general mathematical tools with broad applicability. The same 
is potentially true of the mathematics underlying the generalized quantum formalisms. 
Although originally developed to describe the behavior of entities in the microworld, 
there is no reason why their application should be limited to this realm. In fact, given the 
presence of potentiality and contextuality in cognition, it seems natural to look to these 
formalisms for guidance in the development of a formal description of cognitive 
dynamics. 

 
5.	
  Application	
  of	
  SCOP	
  to	
  concepts	
  
In this section we apply the generalized quantum formalism—specifically the SCOP—to 
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cognition, and show what concepts reveal themselves to be within this framework. To do 
this we must make a number of subtle but essential points. Each of these points may 
appear strange and not completely motivated in itself, but together they deliver a clear 
and consistent picture of what concepts are. 

We begin by outlining some previous work in this direction. Next we present the 
mathematical framework. Then we examine more closely the roles of potentiality, 
context, collapse and actualization. Finally we will focus more specifically on how the 
formalism is used to give a measure of conceptual distance. This is followed up in the 
next section, which shows using a specific example how the formalism is applied to 
concept conjunction. 

 
5.1. Previous work 
One of the first applications of these generalized formalisms to cognition was modeling 
the decision making process. Aerts and Aerts (1994) proved that in situations where one 
moves from a state of indecision to a decided state (or vice versa), and the change of state 
is context-dependent, the probability distribution necessary to describe it is non-
Kolmogorovian . Therefore a classical probability model cannot be used. Moreover, they 
proved that such situations can be accurately described using these generalized quantum 
mathematical formalisms. Their mathematical treatment also applies to the situation 
where a cognitive state changes in a context-dependent way to an increasingly specified 
conceptualization of a stimulus or situation. Once again, context induces a non-
deterministic change of the cognitive state that introduces a non-Kolmogorivia n 
probability on the state space. Thus, a non-classical (quantum or generalized quantum) 
formalism is necessary. 

Using an example involving the concept cat and instances of cats, we proved that 
Bell inequalities are violated in the relationship between a concept and specific instances 
of it (Aerts, Aerts et al. 2000). Thus we have evidence that this formalism reflects the 
underlying structure of concepts. In (Aerts, D’Hondt et al. 2000) we show that this result 
is obtained because of the presence of EPR-'type correlations amongst the features or 
properties of concepts. The EPR nature of these correlations arises because of how 
concepts exist in states of potentiality, with the presence or absence of particular 
properties being determined in the process of the evoking or actualizing of the concept. 
In such situations, the mind handles disjunction in a quantum manner. It is to be expected 
that such correlations exist not only amongst different instances of a single concept, but 
amongst different related concepts, which makes the notion of conceptual distance even 
more suspect. 
 
5.2. Mathematical framework 
In the development of this approach, it became clear that to be able to describe contextual 
interactions and conjunctions of concepts, it is useful to think not just in terms of 
concepts per se, but in terms of the cognitive states that instantiate them. Each concept is 
potentially instantiated by many cognitive states; in other words, many thoughts or 
experiences are interpreted in terms of any given concept. This is why we first present the 
mathematical structure that describes an entire conceptual system, or mind. We will then 
illustrate how concepts appear in this structure. We use the mathematical structure of a 
state context property system or SCOP: 



	
  

	
  
13	
  

 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (Σ, M, L, μ, 𝜈) 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (11)	
  

 
where: Σ is the set of all possible cognitive states, sometimes referred to as conceptual 
space . We use symbols p, q, r,… to denote states; M is the set of relevant contexts that 
can influence how a cognitive state is categorized or conceptualized. We use symbols e, f, 
g,… to denote contexts; L is the lattice which describes the relational structure of the set 
of relevant properties or features. We use symbols a, b, c, … to denote features or 
properties; µ is a property function that describes how a couple (e, p)—where p is a state, 
and e a context—transforms to a couple (f, q), where q is the new state (collapsed state 
for context e), and f the new context; v is the weight or applicability of a certain property, 
given a specific state and context.  

By cognitive states we man states of the mind (the mind being the entity that 
experiences them). Whereas the two sets Σ and M, along with the function 𝜇, constitute 
the set of possible cognitive states and the contexts that evoke them, the set L and the 
function 𝜈, describe properties of these states, and their weights. In general, a cognitive 
state 𝑝 ∈ Σ under context e (the stimulus) changes to state 𝑞 ∈ Σ according to probability 
function µ. Even if the stimulus situation itself does not change, the change of state from 
p to q changes the context (i.e. the stimulus is now experienced in the context of having 
influenced the change of state from p and q). Thus we have a new context f. For a more 
detailed exposition of SCOP applied to cognition, see appendix D. 
 
5.3. How concepts appear in the formalism 
We denote concepts by the symbols A, B, C,… and the set of all concepts	
  A.	
  A concept 
appears in the formalism as a subentity of this entire cognitive system, the mind.6	
  This 
means that if we consider a cognitive state 𝑝 ∈ Σ,	
  for each concept 𝐴 ∈ A,	
  there exists a 
corresponding state pA of this concept. The concept 𝐴 ∈ A	
  is described by its own SCOP 
denoted ( ΣA, M, 𝜇!, LA, 𝜈!), where Σ! is the set of states of this concept, and	
  M	
  is the set 
of contexts. Remark that M	
   is the same for different concepts, and for the mind as a 
whole, because all contexts that are relevant for the mind as a whole are also relevant for 
a single concept. Furthermore,	
  𝜇!describes the probabilities of collapse between states 
and contexts for this concept, and	
   LA and	
  𝜈!	
  refer to the set of features and weights 
relevant to concept A. When we speak of the potentiality of a concept, we refer to the 
totality of ways in which it could be actualized, articulated, or experienced in a cognitive 
state, given all the different contexts in which it could be relevant. 
 
5.3.1. Instantiation of concept actualizes potential. For a set of concepts {Al, A2,…, 
An,,...}, where 𝐴! ∈A∀! , the cognitive state p can be written {𝑝!!,𝑝!!,𝑝!!,… ,𝑝!!,…}, 
where each 𝑝!! is a state of concept Ai. For a given context 𝑒 ∈M, each of these states 𝑝! 
could be a potentiality state or a collapsed state. Let us consider the specific situation 
where the cognitive state p instantiates concept Am. What this explicitly means is that 
𝑝!!, the state of concept Am, becomes an actualized cognitive state, and this corresponds 
to the evoking of concept Am. At the instant Am is evoked in cognitive state p, its 
potentiality is momentarily deflated or collapsed with respect to the given context e. 
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5.3.2. Uninstantiated concepts retain potential. Let us continue considering the specific 
situation where state p instantiates concept Am under context e. For each concept Ai 
where i ≠ m, no instantiation takes place, and state 𝑝!! remains a complete potentially 
state for context e. Thus, concepts that are not evoked in the interpretation of a stimulus 
to become present in the cognitive state retain their potentiality. This means they are not 
limited to a fixed set of features or relations amongst features. The formalism allows for 
this because the state space where a concept ‘lives’ is not limited a priori to features 
thought to be relevant. It is this that allows both their contextual character to be 
expressed, with new features emerging under new contexts. Given the right context were 
to come along, any feature could potentially become incorporated into an instantiation of 
it. 
 
5.3.3. Concepts as contexts and features. In addition to appearing as subentities 
instantiated by cognitive states, concepts appear in the formalism in two other ways. First, 
they can constitute (part of) a context 𝑒 ∈M. Second, something that constitutes a feature 
or property 𝑎 ∈L in one situation can constitute a concept in another; for instance, ‘blue’ 
is a property of the sky, but also one has a concept blue. Thus, the three sets Σ,  M and L, 
of a SCOP are all in some way affected by concepts. 
 
5.3.4. Conjunctions of concepts. As mentioned previously, the operation applied to pure 
quantum entities is the tensor product. The algebraic operation we feel to be most 
promising for the description of conjunction of concepts is the following. In a SCOP, 
there is a straightforward connection between the state of the entity under consideration 
at a certain moment, and the set of properties that are actual at that moment.7 This makes 
it possible to, for a certain fixed property 𝑎 ∈ L, introduce what is called the relative 
SCOP for a, denoted (Σ, M, L, μ, 𝜈)a 	
  .	
  Suppose that (Σ, M, L, μ, 𝜈) describes concept A, 
then (Σ, M, L, μ, 𝜈)a 	
  	
  describes concept A given that property a is always actual for A. We 
could, for example, describe with this structure the concept pet where the property swims 
is always actual. This would give us a possible model for the conjunction of a noun 
concept with an adjective concept. In the case of pet and swims this would come close to 
pet fish, but of course, that this happens is certainly not a general rule. For the case of a 
conjunction of two nouns, if we want to try out the relative SCOP construction, we would 
have to consider the conjunctions of all possible features of the two nouns and derive 
from this the SCOP that would describe the conjunction of the two nouns. 
 
5.4. Superposition, potentiality couples and change of cognitive state 
We cannot specify with complete accuracy (i) the content of state p, nor (ii) the stimulus 
situation it faces, context e, nor (iii) how the two will interact. Therefore, any attempt to 
mathematically model the transition from p to q must incorporate the possibility that the 
situation could be interpreted in many different ways, and thus many different concepts 
(or conjunctions of them) being activated. Within the formalism, it is the structure of the 
probability field 𝜇 that describes this. For a given state p, and another state 𝑞 ∈ Σ  and 
contexts e and 𝑓 ∈M, the probability µ (f, q, e ,p) that state p change s under the influence 
of context e to state q (and that e changes to f ) will often be different from zero. In the 
quantum language, we can express this by saying that p is a superposition state of all the 
states 𝑞 ∈ Σ such that the probability µ (f, q, e, p) is non-zero for some  𝑒, 𝑓 ∈ M. Note 
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that whether or not p is in a state of potentiality depends on the context e. It is possible 
that state p would be a superposition state for e but not for another context f. Therefore, 
we use the term potentiality couple (e, p). 

We stress that the potentiality couple is different from the potentiality of a concept; 
the potentiality couple refers to the cognitive state (in all its rich detail) with respect to a 
certain context (also in all its rich detail), wherein a particular instantiation of some 
concept (or conjunction of them) may be what is being subjectively experienced. 
However, they are related in the sense that the potentiality of p decreases if concepts 𝐴 ∈ 
A evoked in it enter collapsed states. 

 
5.4.1. Collapse: non-deterministic change of cognitive state. Following the quantum 
terminology, we refer to the cognitive state following the change of state under the 
influence of a context as a collapsed state. Very often, though certainly not always, a 
state p is a superposition state with respect to context e and it collapses to state q which is 
an eigenstate8 with respect to e, but a superposition state with respect to the new context f. 
This is the case when couple (e, p) refers to conception of stimulus prior to 
categorization, and couple (f, q) refers to the new situation after categorization has taken 
place.  

Recall that a quantum particle cannot be observed or ‘peeked at’ without 
disturbing it; that is, without inducing a change of state. Similarly, we view concepts as 
existing in states of potentiality which require a context—activation by a stimulus or 
other concept that constitutes (perhaps partially) the present cognitive state—to be 
elicited and thereby constitute the content (perhaps partially) of the next cognitive state. 
However, just as in the quantum case, this ‘peeking’ causes the concept to collapse from 
a state of potentiality to a particular context-driven instantiation of it. Thus, the stimulus 
situation plays the role of the measurement by determining which are the possible states 
that can be collapsed upon; it ‘tests’ in some way the potentiality of the associative 
network, forces it to actualize, in small part, what it is capable of. A stimulus is 
categorized as an instance of a specific concept according to the extent to which the 
conceptualization or categorization of it constitutes a context that collapses the cognitive 
state to a thought or experience of the concept. 
 
5.4.2. Deterministic change of cognitive state. A special case is when the couple (e, p) is 
not a potentiality couple. This means there exists a context f and a state q, such that with 
certainty couple (e, p) changes to couple (f, q). In this case we call (e, p) a deterministic 
couple and p a deterministic state as a member of the couple (e, p). An even more special 
case is when the context e does not provoke any change of the state p. Then the couple (e, 
p) is referred to as an eigencouple, and the state p an eigenstate as a member of the 
couple (e, p). 
 
5.4.3. Retention of potentiality during collapse. For a given stimulus e, the probability 
that the cognitive state p will collapse to a given concept A is related to the algebraic 
structure of the total state context property system (Σ, M, L, μ, 𝜈) and most of all, to the 
probability field µ(f, q, e ,p) that describes how the stimulus and the cognitive state 
interact. It is clear that, much as the potentiality of a concept (to be applicable in all sorts 
of contexts) is reduced to a single actualized alternative when it collapses to a specific 
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instantiation, the potentiality of a stimulus (to be interpreted in all sorts of ways) is 
diminished when it is interpreted in terms of a particular concept. Thus, in the collapse 
process, the stimulus loses potentiality. Consider as an example the situation that one sees 
a flower, but if one were to examine it more closely, one would see that it is a plastic 
flower. One possibility for how a situation such as this gets categorized or conceptualized 
is that extraneous, or modal, feature(s) are discarded, and the cognitive state collapses 
completely to the concept that at first glance appears to best describe it: in this case, 
flower. We can denote this cognitive state 𝑝! ∈ Σ  Some of the richness of the particular 
situation is discarded, but what is gained is a straightforward way of framing it in terms 
of what has come before, thus immediately providing a way to respond to it: as one has 
responded to similar situations in the past. This is more likely if one is in an analytical 
mode and thus 𝜎 is small, such that one does not encode subtle details (e.g. ‘the flower is 
made of plastic'). 

However, a stimulus may be encoded in richer detail such that, in addition to 
features known to be associated with the concept that could perhaps best describe it, 
atypical or modal features are encoded. This is more likely if one is in an associative 
mode, and thus 𝜎 is large. Let us denote as 𝑃! ∈ Σ  the state of perceiving something that 
is flower-like, but that appears to be ‘made of plastic’. The additional feature(s) of P2 
may make it more resistant to immediate classification, thereby giving it potentiality. In 
the context of wanting to make a room more cheerful it may serve the purpose of a 
flower, and be treated as a flower, whereas in the context of a botany class it will not. 
The state P2, that retains potentiality may be close to Pl, the completely collapsed state, 
but not identical to it. In general, the flatter the activation function, the more features of 
the stimulus situation are perceived and thus reflected to and back from the associative 
network. Thus the more likely that some aspects of the situation do not fall cleanly into 
any particular category or concept, and therefore the more potentially present in the 
cognitive state, and the more non-classical the reflection process. Note that in an 
associative mode, for a given cognitive state there will be more features to be resolved, 
and so the variety of potential ways of collapsing will tend to be greater. Hence the set of 
states that can be collapsed to is larger. 

 
5.4.4. Loss of potentiality through repeated collapse. It seems reasonable that the 
presence of potentiality in a cognitive state for a certain context is what induces the 
individual to continue thinking about, recategorizing, and reflecting on the stimulus 
situation. Hence if the cognitive state is like p2, and some of the potentiality of the 
previous cognitive state was retained, this retained potentiality can be collapsed in further 
rounds of reflecting. Thus a stream of collapse ensues, and continues until the stimulus or 
situation can be described in terms of, not just one concept (such as flower), complex 
conjunction of concepts (such as ‘this flower is made of plastic so it is not really a 
flower’). This is a third state p3, that again is a collapsed state, but of a more complex 
nature than the first collapsed state p1 was. But it is more stable with respect to the 
stimulus than p1 or p2. 

The process can continue, leading to a sequence of states P3, P4, P5,…. With each 
iteration the cognitive state changes slightly, such that over time it may become possible 
to fully interpret the stimulus situation in terms of it. Thus, the situation eventually gets 
interpreted as an instance of a new, more complex concept or category, formed 
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spontaneously through the conjunction of previous concepts or categories during the 
process of reflection. The process is contextual in that it is open to influence by those 
features that did not fit the initial categorization, and by new stimuli that happen to come 
along. 

 
5.5. Contextual conceptual distance 
We have claimed that for any concept, given the right context, any feature could 
potentially become involved in its collapse, and thus the notion of conceptual distance 
becomes less meaningful. However, it is possible to obtain a measure of the distance 
between states of concepts, potentiality states as well as collapsed states  (which can be 
prototypes, exemplars, or imaginary constructions), and this is what the formulas here 
measure. 
 
5.5.1. Probability conceptual distance. First, we define what we believe to be the most 
direct distance measure, based on the probability field µ (f, q, e, p). This method is 
analogous to the procedure used for calculating distance in quantum mechanics. We first 
introduce a reduced probability: 
 

𝜇: Σ×ℳ×Σ → 0,1                                                  (12) 
 

𝑞, 𝑒,𝑝 ↦ 𝜇 𝑞, 𝑒,𝑝                                                                                                                    13  
where: 

𝜇 𝑞, 𝑒,𝑝 =    𝜇 𝑓, 𝑞, 𝑒,𝑝
!∈ℳ

                                                                                        (14) 

 
 

and 𝜇 𝑞, 𝑒,𝑝  is the probability that state p changes to state q under the influence of 
context e. 

The calculation of probability conceptual distance is obtained using a 
generalization of the distance in complex Hilbert space for the case of a pure quantum 
situation, as follows: 

 

𝑑! 𝑞, 𝑒,𝑝 = 2(1− 𝜇(𝑞, 𝑒,𝑝))                                                                      (15) 
 

We can also introduce the conceptual angle between two states, again making use of the 
formula from pure quantum mechanics: 
 

𝜃! 𝑞, 𝑒,𝑝 = arccos 𝜇 𝑞, 𝑒,𝑝                                                                                       (16) 
 
We call dµ the probability conceptual distance, or the µ distance, and 𝜃! the probability 
conceptual angle, or the µ angle. For details, see appendix A and equations (31) and (32), 
and remark that for unit vectors (31) reduces to (15). 

Let us consider some special cases to see more clearly what is meant by this 
distance and this angle. If µ (q, e, p) = 0 we have dµ(q, e, p) = 2  and 𝜃! 𝑞, 𝑒,𝑝 =
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!
!
 .This corresponds to the distance and angle between two orthogonal unit vectors in a 

vectorspace . So orthogonality of states, when the probability that one state changes to 
the other state is 0, represent the situation where the distance is maximal ( 2), and the 
angle is a straight angle (!

!
). If µ (q, e, p) = 1, we have dµ (q, e, p) = 0 and 𝜃! 𝑞, 𝑒,𝑝 =  0. 

This corresponds to the distance and angle between two coinciding unit vectors in a 
vectorspace. So coincidence of states—when the probability that one state changes to the 
other state = 1—represents the situation where the distance is minimal (0), and the angle 
is minimal (0). For values of µ (q, e, p) strictly between 0 and 1, we find a distance 
between 0 and 2 and an angle between 0 and  !

!
.    

It is important to remark that the distance dµ (q, e, p) and angle 𝜃! 𝑞, 𝑒,𝑝  between 
two states p and q is dependent on the context e that provokes the transition from p to q. 
Even for a fixed context, the distance does not necessarily satisfy the requirements that a 
distance is usually required to satisfy in mathematics. For example, it is not always the 
case that dµ (q, e, p) = (dµ (p, e, q)), because the probability µ (q, e, p) for p to change to q 
under context e is not necessarily equal to the probability µ (p, e, q) for q to change to p 
under context e.9 

 
5.5.2. Property conceptual distance. In order to illustrate explicitly the relationship 
between our approach and the distance measures provided by the prototype and exemplar 
approaches described previously, we define a second distance measure based on 
properties. This distance measure requires data on the probability of collapse of a 
cognitive state under the influence of a context to a cognitive state in which a particular 
feature is activated. In order to define operationally what this data refers to, we describe 
how it could be obtained experimentally. One group of subjects is asked to consider one 
particular concept A, and this evokes in them cognitive state p. This state will be subtly 
different for each subject, depending on the specific contexts which led them to form 
these concepts, but there will be nevertheless commonalities. A second group of subjects 
is asked to consider another concept B, which evokes cognitive state q. Again, q will be 
in some ways similar and in some ways different for each of these subjects. The subjects 
are then asked to give an example of ‘one’ feature for each one of the considered 
concepts. Thus, two contexts are at play: context e that consists of asking the subject to 
give a feature of the concept focused on in state p, and context f that consists of asking 
the subject to give a feature of the concept focused on in state q. Thus we have two 
potentiality couples (e, p) and (f, q). Suppose couple (e, p) gives rise to the list of features 
{b1 , b2 , ... , bK} and coup  ( f , q) the list of featres {cl, c2 , …, cL}. Some of the features 
may be present on both lists, and others on only one. The two lists combined generate a 
third list {al , a2 , … , aM }. Each feature am is active in a cognitive state rm that one or 
more subjects collapses to under either context e or f. By calculating the relative 
frequencies of these features, we obtain an estimate of 𝜇(rm, e ,p) and   𝜇(rm, f ,q)The 
distance between p and q is now defined as follows: 
 

𝑑! 𝑞, 𝑐, 𝑓,𝑝 =
2
𝑀

(𝜇 𝑟!, 𝑐,𝑝 − 𝜇 𝑟!, 𝑓, 𝑞 )!
!

!!!

                                          (17) 
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We call dp the probability property distance, or the p distance, to distinguish it from dµ, 
the probability distance or 𝜇 distance. 

Remark that to compare this distance dp to the 𝜇 distance dµ we introduce the 
renormalization factor √2/√M. This is to make th e maximal distance, which is attained 
if 𝜇 𝑟!, 𝑒,𝑝 − 𝜇 𝑟!, 𝑓, 𝑞 = 1∀𝑚, equal to 2 . 

We can also define a property conceptual distance based on weights of properties. 
Given a set of features {al , a2 , … , aM }, for each of p and q, v(p, e, am) is the weight of 
feature am for p under context e, and v(q, f , am) is the weight of feature am for q under 
context f. The distance between states p and q for the two concepts under contexts e and 
f respectively can be written as follows: 

 
 

𝑑! 𝑞, 𝑒, 𝑓,𝑝 =   
2
𝑀

𝑣 𝑝, 𝑒,𝑎! − 𝑣 𝑞, 𝑓,𝑎!
!

!

!!!

                                  (18)   

 
We call dw the weight property distance. It is clear that this distance depends not only on 
p and q, but also on the two contexts in which the weights are obtained. How the weights 
depend on context follows partly from the lattice L, which describes the relational 
structure of the set of features, and how this structure is related to the structure of the 
probability field 𝜇(𝑓, 𝑞, 𝑒,𝑝) which gives the probabilities of collapse under a given 
context. 
 
5.5.3. Relationship between the two distance measurements. It would be interesting to 
know whether there is a relationship between the distance measured using the probability 
field and the distance measured using weighted properties. In pure quantum mechanics, 
these two distances are equal (see Appendix III, equations (35) and (39)).  

This could be tested experimentally as follows. Subjects are asked to give a single 
feature of a given concept. We call e the context that consists of making this request. 
Since a concept A evokes slightly different cognitive states p in different subjects, they 
do not all respond with the same feature. Thus we obtain the set of features {al, a2, ..., 
aM}. We denote the cognitive state of a given subject corresponding to the naming of 
feature am by pm. The relative frequency of feature am gives us 𝜇(𝑝!, 𝑒,𝑝). In another 
experiment, we consider the same concept A. We consider the set of features {al, a2, ..., 
aM} collected in the previous experiment . Now subjects are asked to estimate the 
applicability of these features to this concept. This gives us the weight values  𝜈(𝑝, 𝑒,𝑎!). 
Comparing the values of 𝜇(𝑝!, 𝑒,𝑝) and 𝜈(𝑝!, 𝑒,𝑝) makes it possible to find the relation 
between the two distances dp and da. 
 
6.	
  Application	
  to	
  the	
  pet	
  fish	
  problem	
  
We now present theoretical evidence of the utility of the contextual approach using the 
pet fish problem. Conjunctions such as this are dealt with by incorporating context 
dependency, as follows: (i) activation of pet still rarely causes activation of guppy, and 
likewise (ii) activation of fish still rarely causes activation of guppy. But now (iii) pet 
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fish causes activation of the potentiality state pet in the context of pet fish AND fish in 
the context of pet fish. Since for this potentiality state, the probability of collapsing onto 
the state guppy is high, it is very likely to be activated. 
 
6.1. The probability distance 
Let  us  now  calculate  the  various  distance  measures  introduced  in  the  previous 
section.  We use equation (15) for the relevant states and contexts involved: 
 

𝑑! 𝑞, 𝑒,𝑝 = 2(1− 𝜇(𝑞, 𝑒,𝑝))                                                                                          (19) 
 
where 𝜇(𝑞, 𝑒,𝑝) is the probability that state p changes to state q under the influence of 
context e. Two states and three contexts are at play if we calculate the different distances 
dm for the pet fish situation. State p is the cognitive state of a subject before any question 
is asked. Contexts e, f, and g correspond to asking subjects to give an example of pet, 
fish and pet fish respectively. State q corresponds to the cognitive state consisting of the 
concept guppy. 

The transition probabilities are 𝜇(𝑞, 𝑒,𝑝), the probability that a subject answers 
‘guppy’ if asked to give an example of pet, 𝜇(𝑞, 𝑓,𝑝) , the probability that the subject 
answers ‘guppy’ if asked to give an example of fish, and m  𝜇(𝑞,𝑔,𝑝)the probability that 
the subject answers ‘guppy’ if asked to give an example of pet fish. The probability 
distances are then: 
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𝑑! 𝑞,𝑔,𝑝 = 2(1− 𝜇(𝑞,𝑔,𝑝))                                                                                 22   
 
Since 𝜇(𝑞, 𝑒,𝑝) and 𝜇(𝑞, 𝑓,𝑝) are experimentally close to zero, while 𝜇(𝑞,𝑔,𝑝) is close to 
1, we have that 𝑑!(𝑞, 𝑒,𝑝) and 𝑑!(𝑞, 𝑓,𝑝)  are close to √2 (the maximal distance), and 
𝑑!(𝑞,𝑔,𝑝)  is close to zero . 
 
6.2. The property distances 
We only calculate explicitly the weight property distance dw, since this is the one calculated 
in representational approaches. The probability property distance dp is calculated 
analogously. 

Four states p, q, r, s and four contexts e, f, g, h are at play. The states p, q, r, s are the 
cognitive states consisting of guppy, pet, fish and pet fish respectively. The contexts e, f, g, 
h are the experimental situations of being asked to rate the typicality of guppy as an 
instance of these four concepts respectively. For an arbitrary feature am, the weights to 
consider are  𝑣(𝑝, 𝑒,𝑎!),  𝑣(𝑞, 𝑓,𝑎!),  𝑣(𝑠,𝑔,𝑎!), and 𝑣(𝑠, ℎ,𝑎!). The distances are: 
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𝑑 𝑝, 𝑒, 𝑓, 𝑞 = 𝑣 𝑝, 𝑒,𝑎! − 𝑣 𝑞, 𝑓,𝑎!
!

!

!!!
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𝑑 𝑝, 𝑒,𝑔, 𝑟 = 𝑣 𝑝, 𝑒,𝑎! − 𝑣 𝑟,𝑔,𝑎!
!

!

!!!
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𝑑 𝑝, 𝑒, ℎ, 𝑠 = 𝑣 𝑝, 𝑒,𝑎! − 𝑣 𝑠, ℎ,𝑎!
!

!

!!!

                                           25  

  
Thus we have a formalism for describing concepts that is not stumped by a situation 
wherein an entity that is neither a good instance of A nor B is nevertheless a good 
instance of A AND B. Note that whereas in representational approaches, relationships 
between concepts arise through overlapping context-independent distributions, in the 
present approach, the closeness of one concept to another (expressed as the probability 
that its potentiality state will collapse to an actualized state of the other) is context-
dependent . Thus it is possible for two states to be far apart with respect to a one context 
(for example  𝑑!(𝑞, 𝑒,𝑝), the distance between guppy and the cognitive state of the 
subject prior to the context of being asked to name a pet), and close to one another with 
respect to another context (for example  𝑑!(𝑞,𝑔,𝑝), the distance between guppy and the 
cognitive state of the subject prior to the context of being asked to name a pet fish). 
 
7.	
  Summary	
  and	
  Conclusions	
  
Representational theories of concepts-such as prototype, exemplar and schemata 
or theory-based theories-have been adequate for describing cognitive processes occurring 
in a focused, evaluative, analytical mode, where one analyses relationships of cause and 
effect. However, they have proven to be severely limited when it comes to describing 
cognitive processes that occur in a more intuitive, creative, associative mode, where one 
is sensitive to and contextually responds to not just the most typical properties of an item, 
but also less typical (and even hypothetical or imagined) properties. This mode evokes 
relationships of not causation, but correlation, such that new conjunctions of concepts 
emerge spontaneously. This issue of conjunctions appears to have thrown a monkey 
wrench into concepts research, but we see this as a mixed blessing. It brought to light two 
things that have been lacking in this research: the notion of ‘state’ and a rigorous means 
of coping with potentiality and context. 

First a few words about the notion of ‘state’. In representational approaches, a 
concept is represented by one or more of its states. A prototype, previously encountered 
exemplar, or theory description merely one state of a concept. The competition between 
different representational approaches seems to boil down to ‘which of the states of a 
concept most fully captures the potentiality of the concept'? Since different experimental 
designs elicit different context-specific instantiations of a concept, it is not surprising that 
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the states focused on in one theory have greater predictive power in some experiments, 
while the states focused on in another theory have greater predictive power in others. The 
true state of affairs, however, is that none of the states can represent the whole of the 
concept, just as none of the states of a billiard ball can represent the whole of the billiard 
ball. The billiard ball itself is described by the structure of the state space, which includes 
all possible states, given the variables of interest and how they could change. If one 
variable is location and another velocity, then each location-velocity pair constitutes a 
state in this state space. To represent the whole of an entity-whether it be a concept or a 
physical object-one needs to consider the set of all states, and the structure this set has. 

This is the motivation for describing the essence of a concept as a potentiality state. 
The potentiality state can, under the influence of a context, collapse to a prototype, 
experienced exemplar, or an imagined or counterfactual instance. The set of all these 
states, denoted Σ𝐴  for a concept 𝐴 ∈ A, is the state space of concept A. It is this state 
space Σ𝐴, as a totality, together with the set of possible contexts M, and these two sets 
structured within the SCOP ( 𝐴, M, L, 𝜇,  𝜈) that represents the concept. Hence a concept 
is represented by an entire structure—including the possible states and their properties, 
and the contexts that bring about change from one state to another—rather than by one or 
a few specific state(s). 

This brings us to the notion of context. If a theory is deficient with respect to its 
consideration of state and state space, it is not unlikely to be deficient with respect to the 
consideration of context, since contexts require states upon which to act. The 
contextualized approach introduced here makes use of a mathematical generalization of 
standard quantum mechanics, the rationale being that the problems of context and 
conjunction are very reminiscent to the problems of measurement and entanglement that 
motivated the quantum formalism. Below we summarize how these two problems 
manifest in the two domains of physics and cognition, and how they are handled by 
quantum mechanics and its mathematical generalizations.  
 
• The measurement problem for quantum mechanics. To know the state of a micro-

entity, one must observe or measure some property of it. However, the context of the 
measurement process itself changes the state of the micro-entity from superposition 
state to an eigenstate with respect to that measurement. Classical physics does not 
incorporate a means of modeling change of state under the influence of context. The 
best it can do is to avoid as much as possible any influence of the measurement on the 
physical entity under study. However, the change of state under the influence of a 
measurement context—the quantum collapse—is explicitly taken into account in the 
quantum mechanical formalism. The state prior to, and independent of, the 
measurement, can be retrieved as a theoretical object-the unit vector of complex 
Hilbert space-that reacts to all possible measurement contexts in correspondence with 
experimental results. Quantum mechanics made it possible to describe the real 
undisturbed and unaffected state of a physical entity even if most of the experiments 
that are needed to measure properties of this entity disturb this state profoundly (and 
often even destroy it). 
 

• The measurement problem for concepts. According to Rips’ No Peeking Principle, 
we cannot be expected to incorporate into a model of a concept how the concept 
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interacts with knowledge external to it. But can a concept be observed, studied, or 
experienced in the absence of a context, something external to it, whether that be a 
stimulus situation or another concept? We think not. We adopt a Peeking Obligatory 
approach; concepts require a peek-a measurement or context-to be elicited, actualized, 
or consciously experienced. The generalization of quantum mechanics that we use 
enables us to explicitly incorporate the context that elicits a reminding of a concept, 
and the change of state this induces in the concept, into the formal description of the 
concept itself. The concept in its undisturbed state can then be ‘retrieved’ as a 
superposition of its instantiations. 
 

• The entanglement problem for quantum mechanics. Classical physics could 
successfully describe and predict relationships of causation. However, it could not 
describe the correlations and the birth of new states and new properties when micro-
entities interact and form a joint entity. Quantum mechanics describes this as a state of 
entanglement, and use of the tensor product gives new states with new properties. 
 

• The entanglement problem for concepts. Representational theories could 
successfully describe and predict the results of cognitive processes involving 
relationships of causation. However, they could not describe what happens when 
concepts interact to form a conjunction, which often has properties that were not 
present in its constituents. We treat conjunctions as concepts in the context of one 
another, and we investigate whether the relative SCOP might prove to be the algebraic 
operation that corresponds to conjunction. 

 
Note that the measurement/peeking problem and the entanglement/conjunction problem 
both involve context. The measurement/peeking problem concerns a context very 
rxternal to, and of a different sort from, the entity under consideration: an observer or 
measuring apparatus in the case of physics, and a stimulus in the case of cognition. In the 
entanglement/conjunction problem, the context is the same sort of entity as the entity 
under consideration: another particle in the case of physics, or another concept in the case 
of cognition. The flip side of contextuality is potentiality; they are two facets of the more 
general problem of describing the kind of nondeterministic change of state that takes 
place when one has incomplete knowledge of the universe in which the entity (or entities) 
of interest, and the measurement apparatus, are operating. 

The formalisms of quantum mechanics inspired the development of mathematical 
generalizations of these formalisms such as the State Context Property system, or SCOP, 
with which one can describe situations of varying degrees of contextuality. In the SCOP 
formalism, pure classical structure (no effect of context) and pure quantum structure 
(completely contextual) fall out as special cases. Applying the SCOP formalism to 
concepts, pure analytic (no effect of context) and pure associative (completely contextual) 
modes fall out as special cases. In an analytic mode, cognitive states consist of pre-
established concepts. In an associative mode, cognitive states are likely to be potentiality 
states (i.e. not collapsed) with respect to contexts. This can engender a recursive process 
in which the content of the cognitive state is repeatedly reflected back at the associative 
network until it has been completely defined in terms of some conjunction of concepts, 
and thus potentiality gets reduced or eliminated with respect to the context. Eventually a 
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new stimulus context comes along for which this new state is a superposition state, and 
the collapse process begins again. It has been proposed that the onset of the capacity for a 
more associative mode of thought is what lay behind the origin of culture approximately 
two million years ago (Gabora 1998, submitted), and that the capacity to shift back and 
forth at will from analytical to associative thought is what is responsible for the 
unprecedented burst of creativity in the middle/upper Paleolithic (Gabora, submitted).  

We suggest that the reason conjunctions of concepts can be treated as entangled 
states is because of the presence of EPR-type correlations among the properties of 
concepts, which arise because they exist in states of potentiality, with the presence or 
absence of particular properties of a concept being determined in the process of evoking 
or actualizing it. If, concepts are indeed entangled, and thus for any concept, given the 
right context, any feature could potentially become involved in its collapse, then the 
notion of conceptual distance loses some meaning. What can be defined is not the 
distance between concepts, but the distance between states of them.10 That said, the 
measure 𝑑! determines the distance between the cognitive state prior to context (hence a 
potentiality state) to the state after the influence of context (hence the collapsed state). 
The measure dp determines distance between two potentiality states. Note that the 
distance measures used in the prototype and exemplar models are actually distances 
between states of concepts, not between concepts themselves. This means that the 
distances we introduce are no less fundamental or real as measures of conceptual distance. 

Preliminary theoretical evidence was obtained for the utility of the approach, using 
the pet fish problem. Conjunctions such as this are dealt with by incorporating context-
dependency, as follows: (i) activation of pet still rarely causes activation of guppy, and 
likewise (ii) activation of fish still rarely causes activation of guppy. But now (iii) pet 
fish causes activation of the superposition state pet in the context of pet fish AND fish in 
the context of pet fish. Since for this superposition state the probability of collapsing onto 
the state guppy is high, it is very likely to be activated. Thus we have a formalism for 
describing concepts that is not stumped by the sort of widespread anomalies that arise 
with concepts, such as this situation wherein an entity that is neither a good instance of A 
nor B is nevertheless a good instance of the conjunction of A and B. 

Despite our critique of representational approaches, the approach introduced here 
was obviously derived from and inspired by them. Like exemplar theory, it emphasizes 
the capacity of concepts to be instantiated as different exemplars. In agreement to some 
extent with prototype theory, experienced exemplars are ‘woven together’, though 
whereas a prototype is limited to some subset of all conceivable features, a potentiality 
state is not. Our way of dealing with the ‘insides’ of a concept is more like that of the 
theory or schemata approach. An instance is described as, not a set of weighted features, 
but a lattice that represents its relational structure. The introduction of the notion of a 
concept core, and the return of the notion of essence, have been useful for understanding 
how what is most central to a concept could remain unscathed in the face of modification 
to the concepts mini-theory. Our distinction between state or instantiation and 
potentiality state is reminiscent of the distinction between theory and core. However, the 
introduction of a core cannot completely rescue the theory theory until serious 
consideration has been given to state and context. 

We end by asking: does the contextualized approach introduced here bring us 
closer to an answer to the basic question ‘what is a concept’? We have sketched out a 
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theory in which concepts are not fixed representation s but entities existing in states of 
potentiality that get dynamically actualized, often in conjunction with other concepts, 
through a  collapse event that results from the interaction between cognitive state and 
stimulus situation or context. But does this tell us what a concept really is? Just as was 
the case in physics a century ago, the quantum formalism, while clearing out many 
troubling issues, confronts us with the limitations of science. We cannot step outside of 
any particular orientation and observe directly and objectively what a concept is. The 
best we can do is reconstruct a concepts essence from the contextually elicited ‘footprints’ 
it casts in the cognitive states that make up a stream of thought. 
 
Appendices	
  
I. Complex Hilbert space 
A complex Hilbert space H is a set such that for two elements 𝑥,𝑦 ∈ H of this set an 
operation 'sum' is defined, denoted 𝑥 + 𝑦, and for any element 𝑥 ∈ H and any 
complex number 𝜆 ∉ 𝐶, the multiplication of this element 𝑥 with the complex 
number 𝜆 is defined, denoted by 𝜆𝑥. The operation 'sum' and 'multiplication by a 
complex number' satisfy the normal properties that one expect these operations to 
satisfy (e.g. x + y = y+ x, (x+ y) + z = x+ (y+ z), 𝜆𝜇𝑥 = 𝜇𝜆𝑥, etc., ... A complete list 
of all these properties can be found in any textbook on vector spaces). So this 
makes the set H  into a complex vector space, and thus we call the elements 𝑥 ∈ H 
vectors. 

In addition to the two operations of 'sum' and 'multiplication by a 
complex number', a Hilbert space has an operation that is called the `inproduct of 
vectors'. For two vectors 𝑥,𝑦 ∈ H  the inproduct is denoted 𝑥,𝑦 , and it is a complex 
number that has the following properties. For 𝑥,𝑦, 𝑧 ∈ H, and 𝜆 ∈ ℂ, we have: 

 
𝑥,𝑦 =    𝑦, 𝑥 ∗                                                                                                                            26  

 
𝑥,𝑦 + 𝜆𝑧 =    𝑥,𝑦 + 𝜆 , 𝑥, 𝑧                                                                                  27  

 
The inproduct makes it possible to define an orthogonality relation on the set of 
vectors. Two vectors 𝑥,𝑦 ∈ H are orthogonal, denoted 𝑥 ⊥ 𝑦, if and only if 𝑥,𝑦  = 0. 
Suppose that we consider a subset 𝐴 ⊂ H, then we can introduce: 
 

𝐴! = 𝑥|𝑥 ∈ℋ, 𝑥 ⊥ 𝑦∀𝑦 ∈ 𝐴                                                                                   (28) 
 

which consists of all the vectors orthogonal to all vectors in A. It is easy to verify that 
𝐴! is a subspace of H, and we call it the orthogonal subspace to A. We can also show 
that A ⊂ (𝐴!)! , and call (𝐴!)! , also denoted 𝐴!!, the biorthogonal subspace of A. 

There is one more property satisfied to make the complex vectorspace with an 
inproduct into a Hilbert space, and that is, for 𝐴 ⊂ H we have: 

 
𝐴! + 𝐴!! −ℋ                                                                                                                (29) 

 
This means that for any subset 𝐴 ⊂  H, each vector𝑥 ∈ H can always be written as 
the superposition: 
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𝑥 = 𝑦 + 𝑧                                                                                                                                    (30) 

 
where 𝑦 ∈ 𝐴!  and 𝑧 ∈ 𝐴!!. The inproduct also introduces for two vectors 𝑥,𝑦 ∈ H 
the measure of a distance and an angle between these two vectors as follows: 
 

𝑑 𝑥,𝑦 = 𝑥 − 𝑦, 𝑥 − 𝑦                                                                                                            31  

  

𝜃 = arccos 𝑥,𝑦                                                                                                                       (32) 

 
and for one vector  𝑥 ∈ H, the measure of a length of this vector: 
 

𝑥 = 𝑥,𝑦                                                                                                                               (33) 

 
This distance makes the Hilbert space a topological space (a metric space). It can be shown 
that for 𝐴 ⊂ H, we have that 𝐴! is a topologically closed subspace of H, and that the 
biothogonal operation is a closure operation. Hence 𝐴!!is the closure of A. This completes 
the mathematical definition of a complex Hilbert space. 
 
II. Quantum mechanics in Hilbert space 
In quantum mechanics, the states of the physical entity under study are represented by the 
unit vectors of a complex Hilbert space H. Properties are represented by closed subspaces 
of H, hence subsets that are of the form 𝐴!!for some 𝐴 ⊂ H. Let us denote such closed 
subspaces by 𝑀 ⊂ H, and the collection of all closed subspaces by P(H). For a physical 
entity in a state 𝑥 ∈ H, where x is a unit vector, we have that property M is 'actual' if and 
only if 𝑥 ∈ 𝑀. Suppose that we consider a physical entity in a state 𝑥 ∈ H and a 
property 𝑀 ∈ P(H) that is not actual, hence potential. Then, using (30), we can determine 
the weight of this property. Indeed there exists vectors 𝑦, 𝑧 ∈ H such that: 
 

𝑥 = 𝑦 + 𝑧                                                                                                                                     34  

 

and 𝑦 ∈ 𝑀 and 𝑧 ∈ 𝑀!. We call the vector y the projection of x on M, and denote it 
𝑃! (x), and the vector z the projection of x on M, and denote it 𝑃!! 𝑥 . The weight v(x, 
M) of the property M for the state x is then given by: 
 

𝑣 𝑥,𝑀 = 𝑥,𝑃!(𝑥)                                                                                                                                35  

 

The vectors !
!
   or !! !

!! !
and !

!
or

!!! !

!!! !
 are also called the collapsed vectors 

under measurement context 𝑀,𝑀! !. An arbitrary measurement context e in quantum 
mechanics is represented by a set of closed subspaces 𝑀!,𝑀!,… ,𝑀!,… } (eventually 
infinite), such that: 
 

𝑀! ⊥ 𝑀!∀𝑖 ≠ 𝑗                                                                                                                                     36  
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𝑀! =ℋ  
!
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The effect of such a measurement context 𝑀!,𝑀!,… ,𝑀!,…   is that the state x that 
the physical entity is in when the measurement context is applied collapses to one of the 
states: 

𝑃!! 𝑥
𝑃!! 𝑥

                                                                                                                          (38) 

 
and the probability 𝜇(𝑃!! 𝑥 , 𝑒, 𝑥)of this collapse is given by: 
 

𝜇 𝑃!! 𝑥 , 𝑒, 𝑥 = 𝑥,𝑃!!(𝑥)                                                                                               (39) 
 
If we compare (35) and (39) we see that for a quantum mechanical entity the weight of a 
property M for a state x is equal to the probability that the state x will collapse to the state 
!! !
!! !

, if the measurement context {𝑀,𝑀!} is applied to this physical entity in this state. 
That is the reason that it would be interesting to compare these quantities in the case of 
concepts (see section 5.5.3). 
 
III. SCOP systems of pure quantum mechanics.  
The set of states ∑Q of a quantum entity is the set of unit vectors of the complex Hilbert 
space H. The set of contexts MQ

 of a quantum entity is the set of measurement 
contexts, i.e. the set of sequences 𝑀!,𝑀!,… ,𝑀!,…   of closed subspaces of the 
Hilbert space H, such that: 

 
𝑀! ⊥ 𝑀!∀𝑖 ≠ 𝑗                                                                                                                                     40  

  

𝑀!   
!
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Such a sequence is also called a spectral family. The word spectrum refers to the set of 
possible outcomes of the measurement context under consideration. In quantum mechanics, 
a state 𝑝 ∈ Σ! changes to another state 𝑞 ∈ Σ! under the influence of a context 𝑒 ∈ M!

 in 
the following way. If 𝑀!,𝑀!,… ,𝑀!,…  is the spectral family representing the context e, 
and x the unit vector representing the state p, then q is one of the unit vectors: 
 

𝑃!! 𝑥
𝑃!! 𝑥

                                                                                                                                           42   

 
and the change of x to 

!!! !

!!! !
  is called the quantum collapse. The probability of 

this change is given by: 
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Remark that in quantum mechanics the context e is never changed. This means that: 
 

𝜇 𝑓, 𝑞, 𝑒,𝑝 = 0∀𝑓 ≠ 𝑒                                                                                               44  
 

As a consequence, we have for the reduced probability (see (12)): 
 
𝜇 𝑞, 𝑒,𝑝 = 𝜇 𝑒, 𝑞, 𝑒,𝑝 = 𝑥,𝑃!! 𝑥                                                                          45  

 
A property a of a quantum entity is represented by a closed subspace M of the complex 
Hilbert space H. A property a represented by M always has a unique orthogonal property 
𝑎! represented by 𝑀! the orthogonal closed subspace of M. This orthogonal property 
𝑎! is the quantum-negation of the property a. The weight v(p,a) of a property a towards a 
state p is given by: 
 

𝑣(𝑝,𝑎) = 𝑥,𝑃!! 𝑥                                                                                                46  
 
where M represents a and x represents p. Remark that at first sight, the weight does not 
appear to depend on a context, as it does for a general state context property system. This 
is only partly true. In pure quantum mechanics, the weights only depend on context in an 
indirect way, namely because a property introduces a unique context, the context 
corresponding to the measurement of this property. This context is represented by the 
spectral family {𝑀,𝑀!}. 
 
IV. SCOP systems applied to cognition 
A state context property system (Σ, M, L, 𝜇,  𝜈) consists of three sets	
  Σ, M	
  and L	
  and 
two functions  𝜇  and v. 

∑ is the set of cognitive states of the subjects under investigation, while M  is the 
set of contexts that influence and change these cognitive states. L represents 
properties or features of concepts. The function 𝜇 is defined from the set M ×Σ× 
M ×  Σ to the interval [0, 1] of real numbers, such that: 
 

𝜇 𝑓, 𝑞, 𝑒,𝑝 = 1
!∈ℳ,!"∈!

                                                                                      (47) 

 
and 𝜇 𝑓, 𝑞, 𝑒,𝑝  is the probability that the cognitive state p changes to cognitive state q 
under influence of context e entailing a new context f. 

We noted that properties of concepts can also be treated as concepts. Remark also 
that it often makes sense to treat concepts as features. For example, if we say ‘a dog is an 
animal’, it is in fact the feature ‘dog’ of the object in front of us that we relate to the 
feature ‘animal’ of this same physical object. This means that a relation like ‘dog is 
animal’ can be expressed within the structure L in our formalism. 

This relation is the first structural element of the set L, namely a partial order 
relation, denoted <. A property 𝑎 ∈  L ‘implies’ a property 𝑏 ∈ L, and we denote 𝑎 < 𝑏, if 
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only if, whenever a is true then also b is true. This partial order relation has the following 
properties. For 𝑎, 𝑏,∈ L we have: 

 
𝑎 < 𝑎                                                                                                                       48  

 
𝑎 < 𝑏  and  𝑏 < 𝑎⟹ 𝑎 = 𝑏                                                                               49  

  
𝑎 < 𝑏  and  𝑏 < 𝑐⟹ 𝑎 = 𝑐                                                                              (50) 

 
For a set of properties {ai} there exists a conjunction property denoted ∧! 𝑎! . This 
conjunction property ∧! 𝑎!is true if and only if all of the properties 𝑎! are true. This 
means that for 𝑎! , 𝑏 ∈ L we have: 
 

𝑏 <  ∧! 𝑎! ⟺ 𝑏 < 𝑎!∀𝑖                                                                                            (51) 
 
The conjunction property defines mathematically an infimum for the partial order 
relation <. Hence we demand that each subset of L has an infimum in L, which makes L 
into a complete lattice. 

Each property a also has the ‘not’ (negation) of this property, which we denote  𝑎!. 
This is mathematically expressed by demanding that the lattice L be equipped with an 
orthocomplementation, which is a function from L to L such that for 𝑎, 𝑏,∈ L we have: 

 
𝑎! ! = 𝑎                                                                                                                   52  

  
𝑎 < 𝑏⟹ 𝑏! < 𝑎!                                                                                               53  

 
𝑎 ∧ 𝑎! = 0                                                                                                                  (54) 

 
where 0 is the minimal property (the infimum of all the elements of L), hence a property 
that is never true. The makes L into a complete ortho-complemented lattice. 

The function v is denned from the set Σ×M× L to the interval [0, 1], and v(p, e, a) 
is the weight of property a under context e for state p. For 𝑎 ∈ ℒ we have: 
 

𝑣 𝑝, 𝑒,𝑎 + 𝑣 𝑝, 𝑒,𝑎! = 1                                                                                                      (55) 
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