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Abstract 
EVOC is a computer model of the EVOlution of Culture. It 
consists of neural network based agents that invent ideas for 
actions, and imitate neighbors’ actions. EVOC replicates 
using a different fitness function the results obtained with an 
earlier model (MAV), including (1) an increase in mean 
fitness of actions, and (2) an increase and then decrease in the 
diversity of actions. Diversity of actions is positively 
correlated with number of needs, population size and density, 
and with the erosion of borders between populations. Slowly 
eroding borders maximize diversity, fostering specialization 
followed by sharing of fit actions. Square (as opposed to 
toroidal) worlds also exhibit higher diversity. Introducing a 
leader that broadcasts its actions throughout the population 
increases the fitness of actions but reduces diversity; these 
effects diminish the more leaders there are. Low density 
populations have less fit ideas but broadcasting diminishes 
this effect.  

Keywords: agent based modeling; borders; culture; cultural 
evolution; leadership; multiple needs, population density. 

Introduction 
In what sense does culture evolve? Is it possible to distil the 
underlying logic of the process by which ideas adapt and 
build on one another in the minds of interacting individuals, 
in the way that Holland’s (1975) genetic algorithm, or GA, 
distilled the underlying logic of natural selection?  

‘EVOlution of Culture’, or EVOC, is an elaboration of 
Meme and Variations, or MAV (Gabora, 1994, 1995), the 
earliest computer program to model culture as an 
evolutionary process in its own right (as opposed to 
modeling the interplay of cultural and genetic evolution as 
in (Hutchins & Hazelhurst, 1991)). MAV was inspired by 
the GA, a search technique that finds solutions to complex 
problems by generating a ‘population’ of candidate 
solutions through processes akin to mutation and 
recombination, selecting the best, and repeating until a 
satisfactory solution is found. Although MAV inspired the 
incorporation of cultural phenomena (such as imitation, 
knowledge-based operators, and mental simulation) into 
evolutionary search algorithms (e.g. Krasnogor & 
Gustafson, 2004), the goal behind MAV was not to solve 
search problems, but simply to gain insight into how ideas 
evolve. It used neural network based agents that could (1) 
invent new ideas by modifying previously learned ones, (2) 
evaluate ideas, (3) implement ideas as actions, and (4) 
imitate ideas implemented by neighbors. Agents did not 
evolve in a biological sense—they neither died nor had 
offspring—but did in a cultural sense, by generating and 

sharing ideas for actions. The approach can thus be 
contrasted with computer models of the interaction between 
biological evolution and individual learning (Best, 1999, 
2006; Higgs, 2000; Hinton & Nowlan, 1987; Hutchins & 
Hazelhurst, 1991).  

MAV successfully modeled how ‘descent with 
modification’ could occur in a cultural context, but it had 
limitations arising from the outdated methods used to 
program it. Moreover, although the generation of new ideas 
in MAV capitalized on acquired knowledge, the name 
‘Meme and Variations’ implied acceptance of the idea that 
novelty is generated randomly, and that culture evolves 
through a Darwinian process operating on discrete units of 
culture, or ‘memes’. Problems with memetics and other 
Darwinian approaches to culture have become increasingly 
apparent (Boone & Smith, 1998; Fracchia & Lewontin, 
1999; Gabora, 2004, 2006, 2008; Jeffreys, 2000). One 
problem is that since natural selection prohibits inheritance 
of acquired traits, Darwinian approaches must assume that 
elements of culture are expressed in the same form as that in 
which they are acquired. In culture, however, ‘acquired’ 
change—that is, modification to ideas between the time they 
are learned and the time they are expressed—is unavoidable. 
Because ideas cohabit a distributed memory with a 
multitude of other ideas, their meanings, associations, and 
implications are constantly revised. EVOC takes a step 
toward modeling this by allowing agents to have multiple 
needs that require different actions to be fulfilled.  

Other experiments carried out with EVOC but not 
possible to carry out with MAV investigate how cultural 
evolution is affected by leadership, and by the affordances 
of the agents’ world, such as (1) world shape and size, (2) 
population density, and (3) the effect of borders that impede 
information flow, and potentially erode with time.  

Architecture 
EVOC consists of an artificial society of neural network 
based agents in a two-dimensional grid-cell world. It is 
written in Joone, an object oriented programming 
environment, using an open source neural network library 
written in Java. This section describes the key components 
of the agents and the world they inhabit. 

The Agent 
Agents consist of (1) a neural network, which encodes ideas 
for actions and detects trends in what constitutes a fit action, 
and (2) a body, which implements actions. In MAV there 



 

 

was only one need—to attract a mate. Thus actions were 
limited to gestures that attract mates. In EVOC agents can 
also engage in tool-making actions.  
 
The Neural Network. The core of an agent is an 
autoassociative neural network, as shown in Figure 1. It is 
composed of six input nodes that represent concepts of body 
parts (LEFT ARM, RIGHT ARM, LEFT LEG, RIGHT 
LEG, HEAD, and HIPS), six matching output nodes, and 
six hidden nodes that represent more abstract concepts 
(LEFT, RIGHT, FORELIMB, HINDLIMB, SYMMETRY 
and MOVEMENT). Input nodes and output nodes are 
connected to hidden nodes of which they are instances (e.g. 
RIGHT FORELIMB is connected to RIGHT.) Activation of 
any input node activates the MOVEMENT hidden node. 
Same-direction activation of symmetrical input nodes (e.g. 
positive activation—which represents upward motion—of 
both forelimbs) activates the SYMMETRY node.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. The neural network. See text for details.  

 
The neural network learns ideas for actions. An idea is a 

pattern consisting of six elements that dictate the placement 
of the six body parts. Learning and training of the neural 
network is as per (Gabora, 1995). During imitation, the 
input is the action implemented by a neighbor. During 
invention, the pattern of activation on the output nodes is 
fed back to the input nodes, and change is biased according 
to the activations of the SYMMETRY and MOVEMENT 
nodes. In EVOC, the neural network can also be turned off 
to compare results with a data structure that cannot detect 
trends, and thus invents ideas merely at random. 
 
The Body. If the fitness of an action is evaluated to be 
higher than that of any action learned thus far, it is copied 
from the input/output nodes of the neural network that 
represent concepts of body parts to a six digit array that 
contains representions of actual body parts, referred to as 
the body. Since it is useful to know how many agents are 
doing essentially the same thing, when node activations are 
translated into limb movement they are thresholded such 
that there are only three possibilities for each limb: 
stationary, up, or down. Six limbs with three possible 

positions each gives a total of 729 possible actions. Only the 
action that is currently implemented by an agent’s body can 
be observed and imitated by other agents. 

The Fitness Function(s) 
Agents evaluate the effectiveness of their actions according 
to how well they satisfy needs using a pre-defined equation 
referred to as a fitness function. Agents have two possible 
needs. The fitness of an action with respect to the need to 
attract mates is referred to as as F1, and it is calculated as in 
(Gabora, 1995). F1 rewards actions that make use of trends 
detected by the symmetry and movement hidden nodes and 
used by knowledge-based operators to bias the generation of 
new ideas. F1 generates actions that are relatively realistic 
mating displays, and exhibits a cultural analog of epistasis. 
In biological epistasis, the fitness conferred by the allele at 
one gene depends on which allele is present at another gene. 
In this cognitive context, epistasis is present when the 
fitness contributed by movement of one limb depends on 
what other limbs are doing. 

The fitness of an action with respect to the second need, 
the need to make tools, uses a second fitness function, F2, 
and is calculated as follows. The relevant variables are: 

 
aLH = activation of  LEFT HINDLIMB output node 
aRH = activation of RIGHT HINDLIMB output node 
ah = activation of HEAD output node  
L = 1 if aLH = -0.5, else 0 
R = 1 if aRH = -0.5, else 0 
H = 1 if ah ≠ 0, else H = 0 
c = 2.5  

 
F2 = c(L + R + 2H) 

 
The constant allows for a maximum fitness of 10 (which 

is also the maximum fitness using F1). F2 rewards actions in 
which the head moves (to scan tool), arms either move (to 
modify tool) or don’t (to hold tool), and feet are stationary.  

To simulate both needs the fitness functions are combined 
as follows, where y and z are user-defined variables that 
allow for differing weightings of the two needs: 

 
 F1+2 = 0.5(yF1 + zF2) 

The World 
MAV allowed only worlds that were square and toroidal, or 
‘wrap-around’ (such that agents at the left border that 
attempt to move further left appear on the right border). 
Moreover, the world was always maximally densely 
populated, with one agent per cell. In EVOC the world can 
assume any shape, and be as sparsely or densely populated 
as required, with agents placed in any configuration. EVOC 
also allows the creation of complete or semi-permeable 
permanent or eroding borders that decrease the probability 
of imitation along a frontier. 
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Incorporation of Cultural Phenomena  
Agents incorporate the following phenomena characteristic 
of cultural evolution as parameters that can be turned off or 
on (in some cases to varying degrees): 
• Imitation. Ideas for how to perform actions spread when 

agents copy neighbors’ actions. This enables them to 
share effective, or ‘fit’, actions. 

• Invention. This code enables agents to generate new 
actions by modifying their initial action or a previously 
invented or imitated action, as in (Gabora, 1995).  

• Knowledge-based Operators. Since a new action (or, 
in invention, new idea for an action) is not learned 
unless it is fitter than the currently implemented action, 
new actions provide valuable information about what 
constitutes an effective idea. This information is used by 
knowledge-based operators to probabilistically bias 
invention such that new ideas are generated strategically 
as opposed to randomly. For example, if successful 
actions tend to be symmetrical (e.g. left arm moves to 
the right and right arm moves to the left), the probability 
increases that new actions are symmetrical. Also, if 
movement is generally beneficial, the probability 
increases that new actions involve movement of more 
body parts. (See (Gabora, 1995) for further details.) 

• Mental simulation. Before implementing an idea as an 
action, agents use the fitness function to assess how fit 
the action would be if it were implemented. 

A Typical Run 
Each iteration, every agent has the opportunity to (1) 
acquire an idea for a new action, either by imitation, 
copying a neighbor, or by invention, creating one anew, (2) 
update the knowledge-based operators, and (3) implement a 
new action. To invent a new idea, for each node of the idea 
currently represented on the input/output layer of the neural 
network, the agent makes a probabilistic decision as to 
whether change will take place, and if it does, the direction 
of change is stochastically biased by the knowledge-based 
operators. If the new idea has a higher fitness than the 
currently implemented idea, the agent learns and 
implements the action specified by that idea. To acquire an 
idea through imitation, an agent randomly chooses one of its 
neighbors, and evaluates the fitness of the action the 
neighbor is implementing. If its own action is fitter than that 
of the neighbor, it chooses another neighbor, until it has 
either observed all of its immediate neighbors, or found one 
with a fitter action. If no fitter action is found, the agent 
does nothing. Otherwise, the neighbor’s action is copied to 
the input layer, learned, and implemented. 

Fitness of actions starts out low because initially all 
agents are immobile. Soon some agent invents an action that 
has a higher fitness than doing nothing, and this action gets 
imitated, so fitness increases. Fitness increases further as 
other ideas get invented, assessed, implemented as actions, 
and spread through imitation. The diversity of actions 

initially increases due to the proliferation of new ideas, and 
then decreases as agents hone in on the fittest actions. 

The Graphic User Interface 
The graphic user interface (GUI) makes use of the open-
source charting project, JFreeChart, enabling variables to be 
user defined at run time, and results to become visible as the 
computer program runs. The topmost output panel using the 
mating fitness function (F1) is shown in Figure 2. At the 
upper left one specifies the Invention to Imitation Ratio. 
This refers to the probability that a given agent, on a given 
iteration, invents a new idea for an action, versus the 
probability that it imitates a neighbor’s action. Below it is 
Rate of Conceptual Change, where one specifies the degree 
to which a newly invented idea differs from the one it was 
based on. Below that is Number of Agents, which allows the 
user to specify the size of the artificial society. Below that is 
where one specifies Number of Iterations, i.e. the duration 
of a run. The agents that make up the artificial society can 
be accessed individually by clicking the appropriate cell in 
the grid on the upper right. This enables one to see such 
details as the action currently implemented by a particular 
agent, or the fitness of that action. The graphs at the bottom 
plot the mean idea fitness and diversity of ideas, in this case 
using F1 only, i.e. the need to attract a mate. Tabs shown at 
the top give access to other output panels of the GUI. 
 

 
 

Figure 2. Output panel of GUI using F1. See text for details. 

Replication of Key MAV Results 
EVOC closely replicates the results of experiments 
conducted with MAV (Gabora, 1995). The graph on the 
bottom left of Figure 2 shows the increase in fitness of 
actions. The graph on the bottom right of Figure 2 shows the 
initial increase and then decrease in the diversity of actions. 
Other MAV results that are replicated with EVOC include:  
• Fitness increases most quickly with an invention to 

imitation ratio of approximately 2:1. 
• For the agent with the fittest actions, however, the less it 

imitates, the better it does.  



 

 

• Increasing the invention-to-imitation ratio increases the 
diversity of actions. If increased much beyond 2:1, it 
takes more than twice as many iterations for all agents to 
settle on optimal actions.  

• As explained earlier, in EVOC, epistasis refers to the 
situation where the effect on fitness of what one limb is 
doing depends on what another is doing. As in biology, 
epistatically linked elements take longer to optimize. 

• The program exhibits drift—the term biologists use to 
refer to changes in the relative frequencies of alleles 
(forms of a gene) as a statistical byproduct of randomly 
sampling from a finite population (Wright, 1969). With 
respect to culture, the term pertains not to alleles but to 
possible forms of a component of an idea (e.g. if the idea 
is to implement the gesture ‘wave’, one can do this with 
one’s left hand or one’s right). 

These results show that concepts from biology are useful 
in the analysis of cultural change, but that culture also 
exhibits phenomena that have no biological equivalent.  

Experiments 
We now outline the results of new experiments performed 
with EVOC. Unless stated otherwise, graphs plot the 
average of 100 runs, and the world consists of 100 cells, one 
agent per cell, a 1:1 invention to imitation ratio, and a 
0.17% probability of change to any body part during 
invention (since, with six body parts, on average each newly 
invented action differs from the one it was based on with 
respect to one body part).  

Effect of Introducing a Different Fitness Function 
The first experiment investigated the effect of introducing a 
different fitness function that fulfills the need to make tools 
(F2). Figures 3 and 4 show the mean fitness and diversity of 
actions, respectively, using F2. 
  

 
 

Figure 3. Mean fitness of actions with F2. (Error bars give 
standard error since we are plotting means of means.) 

 

 
 

Figure 4. Diversity of actions using F2. 
 
Changing the fitness function did not change the overall 
pattern of results, as seen by comparing Figures 3 and 4 
with the graphs in Figure 2. Mean fitness of actions still 
increases gradually, and diversity of actions rises and then 
falls, exhibiting an inverted U-shaped curve, the magnitude 
of which is a function of population size. However the 
diversity curve is consistently more lopsided for F1 since it 
is easy to arrive at a good action but difficult to arrive at an 
optimal one. This is because optimal actions involve 
epistasis with F1 but not with F2.   

Multiple Needs 
The second experiment investigated the effect of having two 
needs. The introduction of a second need consistently results 
in higher diversity, as shown in figure 5. 
  

 
 

Figure 5. Number of actions with one need versus two. 

Broadcasting 
Broadcasting allows the action of a leader to be visible to 
not just immediate neighbors, but all agents, thereby 
simulating the effects of media such as public performances, 
television, radio, or internet, on patterns of cultural change. 
Each agent adds the broadcaster as a possible source of 
actions it can imitate. The broadcaster can be specified by 
the user or chosen at random. Broadcasting can be constant 
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or intermittent. Figure 6 shows the effect on diversity with a 
randomly chosen broadcaster and constant broadcasting. 
Broadcasting accelerates convergence on optimal actions 
but consistently reduces diversity. This effect decreases the 
more broadcasters there are. 
 

 
 
Figure 6. Diversity of actions decreases with broadcasting. 

Effect of Shape of World and Population Density 
As in MAV (Gabora, 1995), it is possible to increase both 
the diversity of actions and the probability of settling on all 
optimally fit actions by increasing either the invention to 
imitation ratio, or the number of agents. With EVOC this 
could also be accomplished by changing the shape of the 
world from toroidal to square. Agents at the edges of a 
square world have fewer neighbors, and thus more 
opportunity to retain deviant actions.   

 

 
 

Figure 7. Effect of varying population density on diversity 
of actions. 

. 
Figure 7 compares the diversity of actions over a run 

with varying population densities. Decreasing the density of 
agents significantly impairs the ability of the society to 
converge on only the fittest actions because of the existence 
of small isolated clusters that are unable to learn from one 
another and share effective actions. Broadcasting reduces 
this effect (not shown). 

Semi-permeable Borders  
To investigate the impact of impediments to the flow of 
ideas (e.g. country borders) the effect of reduced probability 
of imitation between agents on opposite sides of a border 
was examined. Borders increase latency to converge on fit 
actions, and increase diversity, by effectively dividing the 
population. The most interesting results are achieved when 
borders erode over time such that the probability of 
imitation by agents on opposite sides is initially zero but 
increases over the duration of a run, simulating 
globalization. Eroding barriers foster specialization—honing 
in on unique solutions—on different sides of the border, 
followed by sharing of the best to reach a diverse final set. 
Figure 8 shows the diversity of actions implemented after 4 
iterations with an eroding border. 
  

 

Figure 8. Diversity of actions after four iterations with an 
eroding barrier between columns 3 and 4. Invention-to-

imitation ratio of agents to the right of the border twice is 
that of agents to the left. Different actions are represented by 

differently coloured cells. This run used a toroidal, 
maximally dense 7x7 world. 

Discussion 
This paper has given an overview of factors impacting the 
spread of ideas and behaviors that can be investigated with a 
computer model of cultural evolution. Results suggest that 
increasing the number of needs (as happens in a complex 
society where needs give rise to sub-needs) increases the 
repertoire of actions, and the benefits of leadership with 
respect to enhanced fitness of ideas may be tempered by 
decreased diversity of ideas. This echoes previous 
simulation findings that leadership can have adverse effects 
when agents can communicate (Gigliotta, Miglino,  & 
Parisi, 2007). The results also show that properties of the 
world can have as great an impact on the evolution of 
culture as properties of the agents themselves.  

Further experiments with eroding barriers has potential 
implications for the impact of free trade on global diversity 
of ideas, and for investigating the complex relationship 
between creativity and culture (Kaufman & Sternberg, 
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2006). Future developments will examine the effect of 
migration across borders. However, the primary aim of 
future work will be to examine the distinctively human 
phenomenon of cultural open-endedness. Although 
presently agents’ actions become more complex and adapted 
over time, and change is cumulative in that new actions 
build on existing ones, once agents settle on some subset of 
optimal actions, the program comes to a standstill. Future 
versions will use a fitness function that evaluates actions 
differently depending on the relative strengths of the 
different needs. The strength of a need will be a function of 
both how many iterations have passed since execution of an 
action that satisfied that need, and the degree to which that 
action satisfied that need. It is expected that the program 
will not come to a standstill because once an agent has filled 
one need it will change the kind of action it implements to 
satisfy another. Moreover to avoid that agents still zero in 
on predictable subsets of actions that fulfill these needs, 
future versions of EVOC will incorporate the following: 
• Context-sensitive concepts. We plan to move to a more 

subsymbolic level, incorporating how constellations of 
activated microfeatures are influenced by context (Aerts 
& Gabora, 2005a,b; Gabora, Rosch, & Aerts, 2008). 
This will allow for a richer repertoire of actions.  

• Chained Actions. Agents will be allowed to chain 
actions into arbitrarily long action sequences.  

• Building Blocks. Agents will implement actions that 
cumulatively modify their world using building blocks 
to create structures that satisfy needs, and add to (or 
destroy) structures made by others. 

With these modifications it is expected that there will no 
longer be an a priori limit to the number or complexity of 
actions. The role of each of these modifications in bringing 
about genuine cultural evolution will be assessed. The effort 
will be judged successful if cultural change is not just 
cumulative, but cumulative in a way that responds to needs 
and situations, and open-ended, such that one innovation 
creates niches for the invention of others (as cars paved the 
way for the invention of seat belts and gas stations). 
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